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Abstract
Smoothed Particle Hydrodynamics (SPH) has been established as one of the major concepts for fluid animation in
computer graphics. While SPH initially gained popularity for interactive free-surface scenarios, it has emerged to
be a fully fledged technique for state-of-the-art fluid animation with versatile effects. Nowadays, complex scenes
with millions of sampling points, one- and two-way coupled rigid and elastic solids, multiple phases and addi-
tional features such as foam or air bubbles can be computed at reasonable expense. This state-of-the-art report
summarizes SPH research within the graphics community.
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Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

This section starts with a compact overview of SPH fluids.
Sec. 1.1 introduces the underlying equations, in particular
the momentum equation. Sec. 1.2 explains how to use SPH
for the interpolation of fluid quantities and for the approxi-
mation of spatial derivatives in the momentum equation. Fi-
nally, Sec. 1.3 presents a first simple SPH fluid solver and
introduces its components.

The remainder of this state-of-the-art report discusses var-
ious solver components in detail. Sec. 2 explains approaches
to estimate the neighborhood of a particle. Although recent
research in that direction focuses on uniform grids, various
realizations based on different concepts and considering dif-
ferent architectures such as GPUs are presented. Sec. 3 dis-
cusses various ways to compute pressure forces, either us-
ing a state equation (EOS), EOS-based iterative refinement,
or pressure projection. Benefits, drawbacks, and issues with
performance comparisons are discussed. Sec 4 discusses
methods for boundary handling with a focus on boundaries
that are represented with particles. Sec. 5 discusses variants
that employ adaptive time or space discretization to opti-
mize performance, while Sec. 6 discusses multiphase flu-
ids. Sec. 7 discusses various techniques to reconstruct in-
terface representations from particles and specific render-
ing approaches. Sec. 8 presents approaches to efficiently add

small-scale detail, e.g., foam, spray, and tiny air bubbles, to
pre-computed SPH simulations in order to enhance the vi-
sual quality. Finally, Sec. 9 presents a few aspects that could
be addressed in future research.

1.1. Governing Equations

We consider a fluid that consists of a set of small moving
fluid elements, i.e., particles. Each particle i has a mass mi
and carries attributes such as density ρi, pressure pi or vol-
ume Vi. Over time t, particle positions xi and the respective
attributes are advected with the local fluid velocity vi:

dxi

dt
= vi. (1)

As the particles move with the fluid flow, the time rate
of change of the velocity vi is governed by the Lagrange
form of the Navier-Stokes equation (see Appendix A for a
comparison of Lagrange and Euler formulations):

dvi

dt
=− 1

ρi
∇pi +ν∇2vi +

Fother
i
mi

. (2)

The term − 1
ρi
∇pi describes the particle acceleration due

to pressure differences in the fluid. The respective pressure

c© The Eurographics Association 2014.



Ihmsen et al. / SPH Fluids in Computer Graphics

force generally dominates all forces. It is responsible to pre-
serve the volume of the fluid. As the particle mass is con-
stant, preserving the fluid volume corresponds to preserving
the density. Small and preferably constant density deviations
are important for high-quality simulations. Otherwise, a per-
ceivable and disturbing bouncing of the free surface occurs.
The term ν∇2vi represents the acceleration due to friction
forces between particles with different velocities. Although
the kinematic viscosity ν is known, e.g., ν ≈ 10−6m2 · s−1

for water, larger user-defined values are typically preferred
to improve the stability of SPH simulations. Viscosity is also
realized with alternative methods such as artificial viscos-
ity [Mon92] or XSPH [Mon89]. The term Fother

i
mi

describes
other accelerations such as gravity.

1.2. SPH

The SPH concept is used to interpolate fluid quantities at ar-
bitrary positions and to approximate the spatial derivatives
in Eq. (2) with a finite number of sample positions, i.e., ad-
jacent particles.

Interpolation: A quantity Ai at an arbitrary position xi is
approximately computed with a set of known quantities A j
at neighboring particle positions x j:

Ai = ∑
j

m j

ρ j
A jWi j (3)

with Wi j being a kernel function of the form

Wi j =W
(
‖xi−x j‖

h

)
=W (q) =

1
hd f (q) (4)

where d indicates the number of dimensions and h is the so-
called smoothing length. Kernel functions should be close to
a Gaussian [Mon92], but with a compact support that typ-
ically ranges from h for the bell-shaped function [Luc77]
to 3h for the quintic spline function [Mor96]. The number
of adjacent particles that are considered in the summation
of Eq. (3) depends on the dimensionality d, the support of
the kernel function and the particle spacing which is typi-
cally close to h [Mor96, Mon05]. The choice of the kernel
function, the number and the disorder of considered parti-
cles influence the accuracy of the summation in Eq. (3). A
typical function for the kernel shown in Eq. (4) in 3D would
be the cubic spline [Mon92]:

f (q) =
3

2π


2
3 −q2 + 1

2 q3 0≤ q < 1
1
6 (2−q)3 1≤ q < 2
0 q≥ 2

. (5)

There is, however, no consensus on the optimal kernel
with respect to the trade-off between accuracy and computa-
tional cost. E.g., [APKG07,OK12,OHB∗13] use a set of ker-
nels proposed in [DC96,MCG03,MSKG05]. [ZYF10] uses a
quintic spline [Mor96]. [BT07,AIS∗12,SB12] use the cubic
spline (Eq. (5)).

Spatial derivatives: Spatial derivatives can be com-
puted in various ways. In order to address issues
of the original formulations ∇Ai = ∑ j

m j
ρ j

A j∇Wi j and

∇2Ai = ∑ j
m j
ρ j

A j∇2Wi j, various alternatives have been in-
vestigated and currently, the following approximations are
preferred [Mon92, MFZ97]:

∇Ai = ρi ∑
j

m j

(
Ai

ρ2
i
+

A j

ρ2
j

)
∇Wi j, (6)

∇·Ai = − 1
ρi

∑
j

m jAi j ·∇Wi j, (7)

∇2Ai = 2∑
j

m j

ρ j
Ai j

xi j ·∇Wi j

xi j ·xi j +0.01h2 , (8)

with Ai j = Ai − A j , Ai j = Ai − A j, xi j = xi − x j and

∇Wi j =
(

∂Wi j
∂xi,x

,
∂Wi j
∂xi,y

,
∂Wi j
∂xi,z

)T
. Eq. (6) and Eq. (8) can be used

in the computation of particle accelerations in Eq. (2).
Eq. (7) can, e.g., be used to predict density changes from
the divergence of the velocity field based on the continu-
ity equation [ICS∗13]. While pressure forces are preferably
computed with the formulation in Eq. (6), e.g. [BT07,SP09b,
RWT11], there exist various alternative forms, e.g. [MCG03,
APKG07, LD09].

1.3. Concept of an SPH-based Fluid Solver

The basic building blocks of SPH-based fluid solvers are:
neighborhood search, pressure computation and time inte-
gration. The neighborhood search is typically accelerated
by a spatial access structure, e.g. a uniform grid [THM∗03,
LD08,GSSP10,IABT11], with a cell size that is equal to the
kernel support, e.g., 2h for the kernel in Eq. (5). Details are
discussed in Sec. 2.

In order to compute the pressure gradient in Eq. (2), pres-
sure pi is computed from the density ρi. While Sec. 3 dis-
cusses a variety of alternatives, state equations are a simple
and popular choice and, in this context, the formulation

pi = k

((
ρi

ρ0

)7

−1

)
(9)

seems to be preferred [Mon94, BT07, LD09, YT10, RWT11,
Mon12, YT13]. The value ρ0 is the desired rest density of
the fluid, k is a stiffness constant that scales the pressure
and, thus, the pressure gradient and the respective pressure
forces. In practice, a larger stiffness constant reduces the
compressibility of the fluid, but demands smaller integration
time steps.

Alg. 1 shows an example of a simple SPH simulation
step. As the algorithm employs a state equation, it can be
referred to as state equation SPH (SESPH) [ICS∗13]. In an
implementation, the kernel function Wi j has to be specified,
e.g., cubic with a support of 2h (see Eq. (4) and Eq. (5)).
The particle mass mi has to be specified, e.g., mi = h3

ρ0 as
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Algorithm 1 SPH with state equation.
for all particle i do

find neighbors j
for all particle i do

ρi = ∑ j m jWi j
compute pi using ρi (e.g. Eq. (9))

for all particle i do
Fpressure

i =−mi
ρi
∇pi (e.g. Eq. (6))

Fviscosity
i = miν∇2vi (e.g. Eq. (8))

Fother
i = mig

Fi(t) = Fpressure
i +Fviscosity

i +Fother
i

for all particle i do
vi(t +∆t) = vi(t)+∆tFi(t)/mi
xi(t +∆t) = xi(t)+∆tvi(t +∆t)

in [ICS∗13] or mi = ( 2
3 h)3

ρ0 as in [SB12] resulting in dif-
ferent numbers of neighbors that contribute to the SPH sums
of a particle.

In terms of numerical integration schemes, the semi-
implicit Euler, also referred to as symplectic Euler or Euler-
Cromer, is regularly used, e.g. [IAAT12, SB12, ICS∗13].
The time step ∆t is governed by the Courant-Friedrich-Levy
(CFL) condition, e.g., ∆t ≤ λ

h
‖vmax‖ with λ≈ 0.4 [Mon92], h

being the particle diameter and vmax being the maximum ve-
locity of all particles. For λ = 1, this constraint states that all
particles move less than the particle diameter per time step.
A detailed discussion of further aspects that can be incorpo-
rated into the time step analysis can be found in [IAGT10].
Boundary handling forces as discussed in Sec. 4 are not con-
sidered in Alg. 1.

2. Neighborhood Search

SPH requires the computation of sums over dynamically
changing sets of neighboring particles. The search of these
neighborhood sets is generally accelerated by spatial data
structures that should be efficiently generated and queried,
preferably in a parallelizable way. While the neighborhood
search has similarities with, e.g., collision detection or inter-
section tests in raytracing, it is additionally characterized by
the fact that more than one space cell has to be queried to
find the neighbors of a particle, i.e., cells adjacent to the cell
of a particle have to be accessed. The data structure should
also be efficient for arbitrary, sparsely filled simulation do-
mains with a non-uniform particle distribution.

Although hierarchical data structures such as kd-trees are
used in multi-resolution scenarios with a variable kernel sup-
port [KAD∗06, Kei06, APKG07, SBH09], there seems to be
consensus to employ uniform grids for standard SPH with a
fixed kernel support. Grids are built in O(n) and particles are
accessed in O(1), while hierarchical data structures are typi-

cally built in O(n logn) and accessed in O(logn) [HKK07b].
Therefore, this section focuses on uniform grids.

In addition to the implementation of the grid, there are
further choices that influence the efficiency of an SPH
solver. E.g, it is not obvious whether to store the neigh-
borhood set for reuse as, e.g., in [IABT11], or not as, e.g.,
in [HKK07b, ZSP08, GSSP10]. This mainly depends on the
number of neighborhood queries per simulation step. While
this number is low for non-iterative SPH solvers (see Sec. 3.1
and Sec. 3.2), it can be large for iterative solvers (see Sec. 3.3
and Sec. 3.4). Another performance issue is the frequent re-
computation of neighborhood sets. This issue can be allevi-
ated by Verlet lists [Ver67, Hie07, PH10], where a set of po-
tential neighbors is computed within a distance that is larger
than the actual kernel support. Actual neighbors are com-
puted from the set of potential neighbors which is updated
only every n-th simulation step depending on the ratio be-
tween kernel support and query distance. However, Verlet
lists are prohibitively memory-intensive for complex scenar-
ios and slower than the strategies presented in the following.

The following discussion is limited to various implemen-
tations of uniform grids in the context of SPH applications
with uniform kernel support.

2.1. Uniform Grid

Space is subdivided into cubic cells and each particle is as-
sociated to one cell in the construction stage. To find all rel-
evant neighbors, the cell of a particle and all adjacent cells
are queried. If the cell size is equal to the kernel support,
33 cells have to be queried in 3D, which is optimal accord-
ing to [IABT11]. The number of particles associated with
a cell and the number of neighboring particles depend on
the initial particle distance, e.g., approximately 8 and 40, re-
spectively, for a kernel support twice as large as the initial
particle distance. While the query step is easy to parallelize,
grid construction is not due to potential write conflicts (race
conditions).

2.1.1. Index Sort

In order to avoid race conditions in the parallel construction
of uniform grids, particles can be sorted with respect to a
key that is unambiguously assigned to each cell [PDC∗03,
Gre08,KS09]. Instead of storing references to all particles, a
cell only stores one reference to it’s first particle in the sorted
array. Parallel reduction is commonly employed to compute
these references [KS09]. By sorting particles according to
their spatial cell, particles in the same cell are close in mem-
ory which improves memory coherence. However, particles
in neighboring cells are not necessarily close in memory.

2.1.2. Z-index Sort

Efficient algorithms have to enforce low memory transfers
such that threads can perform the operations with almost

c© The Eurographics Association 2014.



Ihmsen et al. / SPH Fluids in Computer Graphics

no latency. The transfer rate decreases for higher cache-hit
rates, i.e., the percentage of accesses where the requested
data is already present in the cache. The cache-hit rate of any
SPH implementation can be optimized by mapping the spa-
tial locality of particles onto memory. This can be achieved
by employing a space-filling Z-curve for computing cell in-
dices [GSSP10, IABT11].

Rather than sorting an n-dimensional space one di-
mension after another, a Z-curve orders the space by
n-dimensional blocks of 2n cells. This ordering pre-
serves spatial locality due to the self-containing (recur-
sive) block structure. Consequently, it leads to a high
cache-hit rate while indices can be computed fast by bit-
interleaving [PF01]. As shown in [IABT11], the Z-curve
increases the cache-hit rate and, thus, improves the perfor-
mance for the query and processing of particle neighbors.

Index sort variants are considered to be one of the fastest
spatial acceleration methods. However, in these schemes,
the memory consumption scales with the simulation do-
main [Gre08]. In order to represent infinite domains with low
memory consumptions, spatial hashing can be employed.

2.1.3. Hashing

In spatial hashing [THM∗03], the effectively infinite domain
is mapped to a finite list. The hash function that maps a po-
sition x = (x,y,z) to a hash table of size m has the following
form:

c =
[(⌊ x

d

⌋
· p1

)
xor
(⌊ y

d

⌋
· p2

)
xor
(⌊ z

d

⌋
· p3

)]
%m,

(10)
with p1, p2, p3 being large prime numbers that are chosen
as 73856093, 19349663 and 83492791 [THM∗03], respec-
tively. Different spatial cells can be mapped to the same
hash cell (hash collision), slowing down the neighborhood
query. The number of hash collisions can be reduced by
increasing the size of the hash table, trading memory for
speed. [THM∗03] suggests to reserve memory for a certain
number k of entries in all hash cells on initialization in or-
der to avoid frequent memory allocations. However, for SPH
fluids, the hash table is generally sparsely filled. Thus, a sig-
nificant amount of memory is unnecessarily pre-allocated.
Furthermore, cells that are close in memory are necessarily
not close in space which reduces the cache-hit rate for the
neighborhood query. These issues are addressed by the com-
pact hashing method.

2.1.4. Compact Hashing

Compact hashing [IABT11] uses a secondary data structure
which stores a compact list of non-empty (used) cells. Hash
cells just store a handle to their used cell. Memory for a used
cell is allocated if it contains particles and deallocated if the
cell gets empty. Thus, constant memory is consumed for the
hash table and additional memory for the list of used cells.
Thereby, the memory consumption scales with the number
of particles and not with the simulation domain.

Generally, the hash function is designed to abolish spa-
tial locality in order to minimize the number of hash colli-
sions. As this would result in an increased memory trans-
fer and longer query times compared to index sort meth-
ods, [IABT11] proposes to reorder the particles and the com-
pact list of used cells according to a Z-curve. As particles
show a high temporal locality, sorting might not be required
in each simulation step. Depending on the performance of
the sorting algorithm and the number of particles that move
between cells, reordering can be performed in each [DRF12]
to every 100th [IABT11] simulation step in order to yield
the optimal performance. Interestingly, when reordering is
performed in each step, the compact list just needs to store
a reference to the first particle in the sorted array and the
number of entries, instead of references to all particles in the
cell. This further reduces the memory consumption of the
compact list.

2.1.5. GPUs

Since there are almost no data dependencies, SPH methods
generally map well to the streaming architecture of today’s
Graphic Processing Units (GPUs) [HKK07b, Gre08, ZSP08,
YWH∗09,GSSP10,OK12,MM13]. On GPUs, neighborhood
computations can be carried out via two dual mapping oper-
ations: either by scattering particle contributions onto points
of evaluation, or by gathering of particle data at sampling
positions.

Scattering operations are efficiently realized in combina-
tion with the rasterization pipeline of programmable graph-
ics hardware [KLRS04, KSW04, AIY∗04, KC05, HCM06,
HKK07a, HKK07b, ZSP08]. Field functions are mapped
to fragment shaders which blend particle contributions
into several texture slices using render-to-texture mecha-
nisms [KC05]. The absence of acceleration structures and
neighborhood queries makes scattering very attractive for in-
teractive rendering of SPH data [vdLGS09,FGE10,FAW10].

In contrast, gathering operations better exploit paral-
lelism in combination with generic programming APIs such
as CUDA or OpenCL, which is advantageous for simula-
tion [Gre08,GSSP10,OK12,MM13] and surface reconstruc-
tion [AIAT12,AAIT12]. However, a vital criterion for the ef-
ficiency of gathering approaches is thread coherence includ-
ing coherent memory access between concurrent threads.
Thus, neighborhood search is in general realized with an in-
dex sort [Gre08] or Z-index sort [GSSP10, ZGHG10], em-
ploying a data-parallel radix sort [SHG09] and stream com-
paction [SHZO07] as main building blocks. Furthermore,
it is advantageous to avoid data transfer between CPU and
GPU, favoring fully GPU-based systems which due to mem-
ory limits trade particle numbers for computation speed.
However, in combination with domain decomposition tech-
niques, multi-GPU solvers [VBDRC12, ZSL∗13, RBH∗13]
can be utilized in order to increase the particle resolution.
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3. Incompressibility

Enforcing incompressibility is essential for realistic SPH
fluid simulations. While oscillations of the free surface due
to compressibility are less prominent in small scenarios, os-
cillations become more significant for larger scenes with,
e.g., millions of particles [ICS∗13].

The computation of particle states with low compressibil-
ity, usually between 0.1% and 1% [MM97, SP09b, ICS∗13],
is one of the most expensive steps in SPH. Either the com-
putation per time step is efficient, albeit at the expense of a
small time step, or the computation is expensive for a larger
time step.

This survey classifies all discussed incompressibility ap-
proaches into four classes. First, non-iterative approaches
are discussed that employ an equation of state (EOS). Sec-
ond, EOS solvers with splitting are outlined. Third, iterative
EOS solvers are explained. Fourth, solvers based on a pres-
sure Poisson equation are outlined.

3.1. Non-iterative EOS Solvers

State equations are used in the context of Alg. 1 to compute
pressure from density. For example, pi = c2

s ρi has been pro-
posed in [MM97]. Here, cs is often referred to as the speed of
sound. This is motivated by the fact that fluids with a Mach
number greater than 0.3 are of considerable compressibility.
As a given constant cs results in a certain compressibility, the
respective simulation does not represent a real fluid, but an
artificial one with a reduced sound speed [Mon94]. In prac-
tice, cs is a stiffness constant that scales the pressure and,
thus, the pressure gradient and the respective pressure forces.
A larger value reduces the compressibility of the fluid, but
also limits the time step. Therefore, the stiffness constants
for different variants of the state equation are all denoted
with k in the following.

Alternatively to [MM97], pressure is often related to
ρi− ρ0, the deviation of the actual density to the rest den-
sity, i.e., the density error. Here, slightly varying forms
are employed, e.g., pi = k(ρi − ρ0) [DC96, MCG03] or
pi = k(ρi/ρ0−1) [APKG07]. However, as already discussed
in Sec. 1, the formulation pi = k((ρi/ρ0)

7 − 1) is widely
used [Mon94,BT07,LD09,YT10,RWT11,YT13]. [ZYF10]
proposes pi = k((ρi/ρ0)

2−1).

Differences in terms of stability and performance between
the various EOS formulations are rarely analyzed in the
literature. Generally, the incorporation of any of the dis-
cussed state equations seems to be less efficient compared
to iterative EOS solvers (Sec. 3.3) and pressure projection
(Sec. 3.4). Nevertheless, it would be interesting to see the
performance of a state equation in combination with a non-
iterative splitting approach as given in Alg. 2.

3.2. Non-iterative EOS Solvers with Splitting

As an interesting alternative to Alg. 1, the pressure could be
computed with the density that is obtained after advecting
the particles without pressure forces. This concept is known
as splitting, e.g. [Cho68, Bri08], and the basis of various
iterative solvers, e.g. [PTB∗03, SP09b, SBH09, HLWW12,
ICS∗13,MM13]. Therefore, accelerations in Eq. (2) are split,
i.e., considered in two different steps. First, an intermedi-
ate velocity v∗ is computed from all non-pressure accel-
erations: (v∗ − v(t))/∆t = ν∇2vi(t) + Fother

i (t)/mi. Then,
the acceleration from the pressure gradient is computed for
the resulting velocity: (v(t +∆t)− v∗)/∆t = −(1/ρ

∗
i )∇pi.

Pressure pi is computed using ρ
∗
i , while ρ

∗
i is computed af-

ter advecting the particles with v∗i . The respective pressure
forces are intended to project the intermediate velocity v∗

onto a divergence-free velocity field, i.e., to minimize den-
sity deviations. Alg. 2 shows a simple implementation of this
concept. While non-pressure forces compete with pressure
forces in Alg. 1, Alg. 2 considers the effect of non-pressure
forces in the computation of pressure forces. Alg. 1 and
Alg. 2 have not been compared in the literature yet. How-
ever, since iterative SPH solvers based on splitting gener-
ally outperform Alg. 1, e.g. [SP09b,HLWW12], simple non-
iterative splitting as in Alg. 2 is certainly a promising con-
cept.

Algorithm 2 SPH with state equation and splitting.
for all particle i do

find neighbors j
for all particle i do

Fviscosiy
i = miν∇2vi (e.g. Eq. (8))

Fother
i = mig

v∗i = vi(t)+∆t Fviscosity
i +Fother

i
mi

for all particle i do
ρ
∗
i = ∑ j m jWi j +∆t ∑ j(v

∗
i −v∗j ) ·∇Wi j

compute pi using ρ
∗
i (e.g. Eq. (9))

for all particle i do
Fpressure

i =− mi
ρ∗

i
∇pi (e.g. Eq. (6))

for all particle i do
vi(t +∆t) = v∗i +∆tFpressure

i /mi
xi(t +∆t) = xi(t)+∆tvi(t +∆t)

3.3. Iterative EOS Solvers with Splitting

This concept is also based on the splitting concept illustrated
in Alg. 2. Intermediate velocities and positions are predicted
using all non-pressure forces. To minimize density errors at
the intermediate state, pressure forces are calculated. As an
extension to Alg. 2, these pressure forces are iteratively re-
fined. In each iteration, the pressure forces lead to updated
intermediate positions and velocities with a new density er-
ror that is considered in the force computation of the fol-
lowing iteration. If the density error ρerr - either the average
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or the maximum - is below a threshold η, the algorithm ter-
minates. In contrast to non-iterative EOS solvers in Sec. 3.1
and Sec. 3.2, the stiffness constant in the state equation is
generally computed and not user-defined. Instead, iterative
EOS solvers are parameterized by a more appropriate and
intuitive density error η. Smaller values for η result in more
iterations, larger values are more efficient as less iterations
are required.

Alg. 3 illustrates the concept. The notation is closely
aligned with the iterative local Poisson approach (LPSPH)
in [HLWW12], but can be mapped to other iterative EOS
solvers, e.g. [SP09b] as well. While Alg. 3 is not an optimal
implementation, it is a good illustration of the concept.

Algorithm 3 Iterative EOS solver with splitting.
for all particle i do

find neighbors j
for all particle i do

Fviscosity
i = miν∇2vi (e.g. Eq. (8))

Fother
i = mig

v∗i = vi(t)+∆t Fviscosity
i +Fother

i
mi

x∗i = xi(t)+∆tv∗i
repeat

for all particle i do
compute ρ

∗
i using x∗i

compute pi using ρ
∗
i , e.g. pi = k(ρ∗i −ρ0)

compute ρerr
for all particle i do

Fpressure
i =− mi

ρ∗
i
∇pi (e.g. Eq. (6))

v∗i = v∗i +∆t Fpressure
i
mi

x∗i = x∗i +∆t2 Fpressure
i
mi

until ρerr < η

for all particle i do
vi(t +∆t) = v∗i
xi(t +∆t) = x∗i

In addition to [HLWW12], other approaches implement
this concept to enforce incompressibility with interesting
variations. In predictive-corrective SPH (PCISPH) [SP09b],
pressure is accumulated instead of pressure forces.
[HLWW12] recomputes particle neighbors in each itera-
tion, [SP09b] does not. Also, different stiffness constants are
used. PCISPH uses

k =
2ρ

2
0

m2
i ·∆t2 ∑ j∇W 0

i j ·∑ j∇W 0
i j +∑ j(∇W 0

i j ·∇W 0
i j)

(11)

with W 0
i j being kernel values for a prototype particle. So, k

can be mainly precomputed and only changes with the time
step. In contrast, LPSPH uses

k =
ρ
∗
i r2

i
2ρ0∆t2 (12)

with initial particle distance 2ri which is derived from the
pressure Poisson equation [HLWW12].

In each iteration, PCISPH and LPSPH compute interme-
diate positions. This is also done in position-based fluids
(PBF) [MM13] and to some extent in [CBP05]. Following
the splitting concept, PBF uses non-pressure forces to pre-
dict intermediate positions and velocities. Then, positions
are iteratively refined to enforce incompressibility. There-
fore, the state equation pi = k(ρi/ρ0− 1) with k = 1 is em-
ployed. Instead of accumulating pressure or pressure forces,
PBF accumulates distances in each iteration with

∆xi =−
1
ρ0

∑
j

(
pi

βi
+

p j

β j

)
∇Wi j, (13)

where ∆xi is the position change per iteration. βi and β j
are precomputed constants. The position update in Eq. (13)
is closely related to an SPH pressure force. However,
PBF [MM13] avoids accumulating pressure or pressure
forces that eventually update the velocity and the position.

Another closely related approach is presented in [BLS12].
Splitting is employed and then, velocities and positions are
iteratively updated. The same state equation as in [MM13]
is employed. In contrast to PBF [MM13] and similar to
PCISPH [SP09b], pressure is accumulated. From an SPH
perspective, [BLS12] is difficult to read. Density is com-
puted with SPH using the regular kernel function Wi j. The
kernel gradient, however, is denoted as fi j r̂i j. The approach
solves for Lagrange multipliers λi that are related to the neg-
ative pressure as can be seen, e.g., from the formulation of
the constraint force: fi = ∑ j(miλi +m jλ j) fi j r̂i j.

Performance: The performance of iterative EOS solvers
is commonly characterized by the maximum possible time
step and the required number of iterations for a specified
density error. [SP09b] shows that PCISPH allows for time
steps that are up to two orders of magnitude larger than in a
non-iterative EOS solver [BT07]. The average number of it-
erations is between three and five for density errors of 0.1%
and 1%, resulting in an overall speedup factor of fifty com-
pared to [BT07]. [HLWW12] presents a slightly improved
performance with a speedup of 1.5 compared to PCISPH.
PBF tolerates significantly larger time steps than PCISPH,
but requires more iterations, resulting in a similar overall
performance. In [BLS12], speedup factors of 25 to 250 are
reported compared to non-iterative EOS solvers. Typically,
5 to 15 iterations are employed, while a density error of
1% is obtained with 100 iterations. However, as discussed
in [ICS∗13,MM13] a thorough performance analysis of iter-
ative EOS solvers is rather involved. This is due to the fact
that these solvers do not necessarily reach their optimal per-
formance for the largest time step. On one hand, the number
of iterations grows with the time step. On the other hand,
the neighborhood search has to be performed per simulation
step.

Discussion: Non-iterative EOS solvers use different state
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equations, in particular they use different stiffness constants.
They also differ in terms of the quantity that is accumu-
lated. Pressure, pressure forces or distances are accumulated
to compute final particle positions. It would be interesting to
analyze these aspects: Which stiffness constant is optimal?
Which quantity should be updated? Is it an option to analyze
individual stiffness constants per particle?

3.4. Pressure Projection

As an alternative to state equations, pressure can also be
computed by solving a pressure Poisson equation (PPE).
Following the splitting concept, intermediate velocities v∗i
are predicted by applying all non-pressure forces. Then,
pressure pi is computed from a discretized PPE in or-
der to correct (project) the intermediate velocities to a
divergence-free state vi(t + ∆t) = v∗i − (1/ρ

∗
i )∇pi. This

technique is commonly applied in grid-based approaches,
e.g. [FF01, Bri08, CM11]. In SPH approaches, the pressure
Poisson equation is used with different source terms, either
using the divergence of the intermediate velocity field v∗i ,
e.g. [CR99, PTB∗03], as

∇2 pi =
ρ0
∆t
∇·v∗i (14)

or the compression ρ0−ρ
∗
i after advecting the particles with

v∗i , e.g. [SL03, KGS09], as

∇2 pi =
ρ0−ρ

∗
i

∆t2 . (15)

Some authors propose combinations of both source
terms [HA07,LTKF08]. The density can also be replaced by
the number density δi = ∑ j Wi j [PTB∗03, HA07, LTKF08].
The concept of pressure projection, referred to as incom-
pressible SPH (ISPH), is illustrated in Alg. 4. It is very sim-
ilar to Alg. 2, but instead of computing pressure per parti-
cle with the state equation, pressure is computed by solving
the linear system that is described with the PPE, Eq. (14)
or Eq. (15).

Recently, an alternative ISPH solver has been presented
by [ICS∗13]. The approach is referred to as implicit in-
compressible SPH (IISPH). Although solving a linear sys-
tem seems to be expensive at first sight, IISPH outper-
forms PCISPH [SP09b] and a standard ISPH variant [SL03].
IISPH employs the density invariance condition as source
term in Eq. (15). Further, IISPH combines a discretized
form of the continuity equation and an SPH form of the
pressure force to a discretized form of the PPE. The em-
ployed form of the pressure force is equal to the pressure
force that is used in the velocity update. This concept is
different to approaches that either directly discretize the
Laplace operator, e.g. [CR99, SL03, HA07, KGS09], or to
approaches that use a background grid for the discretiza-
tion [LTKF08, YLHB09, RWT11].

PPEs can be solved in various ways, e.g., using successive

Algorithm 4 SPH with pressure projection (Incompressible
SPH).

for all particle i do
find neighbors j

for all particle i do
Fviscosiy

i = miν∇2vi (e.g. Eq. (8))
Fother

i = mig

v∗i = vi(t)+∆t Fviscosity
i +Fother

i
mi

for all particle i do
ρ
∗
i = ∑ j m jWi j +∆t ∑ j(v

∗
i −v∗j ) ·∇Wi j

solve the PPE in Eq. (14) or Eq. (15)
for all particle i do

Fpressure
i =− mi

ρ∗
i
∇pi (e.g. Eq. (6))

for all particle i do
vi(t +∆t) = v∗i +∆tFpressure

i /mi
xi(t +∆t) = xi(t)+∆tvi(t +∆t)

Figure 1: A breaking dam simulated with 20 million SPH
particles. The volume is preserved up to an error of 0.1%.
Velocities are color-coded.

over-relaxation (SOR) [FM96], conjugate gradient [CR99,
FF01] or multigrid techniques [CM11]. In IISPH, relaxed
Jacobi is employed to iteratively compute the pressure field.
[ICS∗13] shows that the solver can be implemented in a
very efficient, matrix-free way. Only seven scalar values are
stored per particle and only two particle loops are required
per iteration. Further, comparatively few iterations are suffi-
cient to obtain small density deviations of down to 0.01%.
Compared to PCISPH, a speedup of up to six is presented
for the computation of the pressure field.

Discussion: Although IISPH needs to solve a linear sys-
tem, the actual implementation corresponds to iterative EOS
solvers that accumulate pressure as in PCISPH. Basically,
pressure is iteratively updated. In each iteration, PCISPH
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scene particles neighborhood pressure IISPH iterations ∆t spacing

breaking dam (Fig. 1) 20M 8.5s 21.5s 10 0.0034s 0.1m
fountain (Fig. 2) 17M 7.0s 10.0s 4 0.0008s 0.0125m
ships (Fig. 3) 19M 8.0s 24.0s 12 0.017s 0.5m

Table 1: Measurements given for a single simulation step performed on a standard six-core desktop computer.

Figure 2: A fountain simulated with 17 million SPH parti-
cles. Velocities are color-coded.

loops three times over all particles, IISPH requires only two
loops. The memory footprint of seven scalar values per parti-
cle in IISPH is negligible. In terms of the time step, [ICS∗13]
shows that the optimal time step does not necessarily cor-
respond to the maximum possible time step in IISPH and
PCISPH. [ICS∗13] also illustrates the relation between time
step and particle size. Time steps of up to 0.05s are presented
for particles with a radius of 1m.

Figures 1, 2, 3 show example scenarios that have
been computed with compact hashing [IABT11] and
IISPH [ICS∗13] on a standard six-core computer. Perfor-
mance measurements are summarized in Table 1.

3.5. Performance Comparison

Existing publications indicate that iterative EOS solvers,
e.g., PCISPH and PBF, are more efficient than non-iterative
EOS solvers and that pressure projection, e.g., IISPH,
is more efficient compared to iterative EOS solvers. As
can be deduced from the detailed performance analysis
in [ICS∗13], a thorough comparison is rather complex. This
is due to various reasons.

Criteria: There seems to be an agreement to measure
the overall computation time for a scenario to account for
the different characteristics of existing solvers. Non-iterative

Figure 3: Three ships sailing at a speed of 60 kilometers per
hour. The 19 million SPH particles are color-coded accord-
ing to velocity.

EOS solvers are fast per simulation step with rather small
time steps, while iterative EOS solvers and pressure projec-
tion schemes are expensive per simulation step, but allow
for large time steps. As the overall computation time of all
solvers largely depends on the obtained incompressibility,
average or maximum density errors are considered to spec-
ify the simulation quality.

Parameters: In non-iterative EOS solvers, the perfor-
mance depends on one or more stiffness constants in the
EOS. These stiffness constants govern the obtained density
error, i.e. the simulation quality. Larger constants require
smaller time steps, while the computation time per simula-
tion step is constant. The desired density error can not be
specified, but only tested. This is in contrast to iterative EOS
solvers or pressure projection which are parameterized by a
desired density error. Here, the computation time per sim-
ulation step grows for smaller specified density errors. On
the other hand, larger time steps can be used. A performance
comparison of non-iterative and iterative EOS solvers is only
useful, if the density error in both approaches is compara-
ble. Thus, the stiffness constant in one approach has to be
mapped to the specified density error in the other approach.

Optimal Performance: As discussed in [ICS∗13], SPH
simulations with iterative EOS solvers or pressure projection
schemes do not reach their maximum overall performance
for the largest possible time step. I.e., there exists an opti-
mal time step, where the combination of neighbor search and
pressure computation reaches its best performance. While
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this optimal time step is mentioned in [ICS∗13], it has not
been analyzed and it is not explained how to find it without
testing.

Test scenarios: Depending on the test scenario, arbitrary
performance differences can be obtained. E.g., for one SPH
particle, a non-iterative EOS solver is the fastest solution,
as iterative EOS solvers and pressure projection commonly
perform a minimum number of iterations. Non-iterative EOS
solvers can even be optimal for arbitrarily large scenes with
millions of particles, if these particles form rather shallow
water. Iterative EOS solvers and pressure projection, on the
other hand, are more efficient for complex scenes. The term
"complex" is rarely defined, but usually refers to large sce-
narios with a certain fluid depth, e.g. a breaking dam. It is
more expensive to obtain a desired density error for growing
fluid depths. Additionally, with growing fluid depth the tol-
erable density error decreases to avoid visible oscillations of
the free surface, making the pressure computation even more
expensive.

4. Boundary Handling

The interaction of the fluid with rigid boundaries requires
special consideration in order to prevent penetration of ob-
jects. In most SPH implementations, solids are sampled
with particles which exert forces on fluid particles. [Mon94,
Mon05,MK09] compute distance-based penalty forces, e.g.,
Lennard-Jones forces which scale polynomially with the
distance to the fluid particle. Although this approach has
been adapted to realize the interaction of compressible SPH
fluids with particle-sampled deformable meshes [MST∗04,
LAD08], it causes large pressure variations in the fluid
which further restricts the time step for weakly compress-
ible fluids. The main difficulty in penalty-based approaches
is controlling the stiffness parameter which has to be bal-
anced such that penetrations of rigid boundaries are avoided,
while not causing pressures that are too high. Generally,
these methods require small integration time steps to pro-
duce smooth pressure distributions.

In order to overcome the issues of penalty-based methods
and to have more control on the boundary condition, direct
forcing has been proposed in [BTT09]. In this method, one-
and two-way coupling of rigid bodies and fluids are realized
by computing control forces and velocities using a predictor-
corrector scheme. Thereby, different slip-conditions can be
modeled, while non-penetration is guaranteed. Compared to
penalty-based methods larger time steps can be used.

A phenomenon that occurs in distance-based penalty
schemes and in direct forcing is sticking of fluid particles
to the solid boundary. This results from particle deficiency
at the interface with the solid boundary. Here, the support
domain is not sufficiently sampled and, thus, field vari-
ables cannot be well approximated with the SPH interpo-
lation concept. Harada et al. addressed this problem for the

distance-based approach [HKK07b] by employing a wall-
weight function which based on the distance adds a pre-
computed contribution of the boundary to the fluid density.
This significantly reduces the stacking of particles, but in-
troduces irregular density distributions at the boundary as
shown in [IAGT10].

In order to obtain smoother transitions at the solid in-
terface, boundary particles should contribute to the recon-
struction of field variables. Therefore, solid objects are
either pre-sampled with particles, e.g., [KAD∗06, SSP07,
FG07, IAGT10, SB12, AIS∗12], or sampled on the fly, e.g.,
[HA06]. Furthermore, different strategies have been pro-
posed how boundary particles are taken into account. For
example in [MM97,SSP07,IAGT10], boundary particles are
treated like fluid particles which are advected by the velocity
of the solid, i.e., for each boundary particle a unique density
and pressure value is computed. Another strategy is to mirror
quantities of neighboring fluid particles onto boundary par-
ticles, e.g., a boundary particle gets the same pressure as its
neighboring fluid particle. Mirroring quantities has been suc-
cessfully employed to simulate different slip conditions for
straight [HA06] and curved [MM97, SB12, AIS∗12] bound-
aries.

The sampling distance of boundaries influences the nu-
merical stability and the quality of the simulation signifi-
cantly. Simple objects like a cube can be equidistantly sam-
pled with particles, but for complex shapes with convex
and concave regions, irregular samplings cannot be pre-
vented. Furthermore, sampling only the surface of solid ob-
jects with a single layer is desirable for performance rea-
sons and for thin objects. These challenges have been ad-
dressed in [AIS∗12], where inhomogeneous samplings are
handled by dynamically computing the relative contribution
of a boundary particle. This yields smooth reconstructions
for densely sampled, complex boundaries, including dynam-
ically changing contacts with multiple objects as illustrated
in Fig. 4. Non-penetration is guaranteed even when sampling
objects with a single particle layer, enabling plausible inter-
actions with lower dimensional objects. Two-way coupling
has been demonstrated even for large density ratios of up to
1000. As the approach purely builds on fluid quantities such
as pressure or viscosity to handle collisions and friction, it
can be easily integrated into any SPH implementation, e.g.,
IISPH as presented in [ICS∗13]. An extension of [AIS∗12]
for realizing one- and two-way coupling with deformable
solids and cloth has been proposed in [ACAT13].

As shown in [OHB∗13], the two-way coupling concept
can be employed to model transport, i.e., the exchange of
quantities between rigid objects and fluids. Thereby, convec-
tion is extended by a robust surface transport.

5. Adaptivity

The resolution of a fluid has a large impact on the result-
ing visual quality. Surface complexity is increased and dissi-
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Figure 4: Simulation of 20 million SPH particles. Two-way
fluid-solid coupling is realized with [AIS∗12].

pation is reduced with increasing number of particles. Sim-
ulations in the order of tens of million particles are, how-
ever, very challenging to compute within a given time frame
on a desktop computer. Therefore, adaptive sampling tech-
niques have been explored that follow the idea to allocate
resources to visually interesting regions only. Adaptive sam-
pling mechanisms either adapt the spatial resolution or adapt
the sampling distance in time. In the following, we will sum-
marize both, space and time adaptive methods.

5.1. Adaptive Spatial Discretization

Homogeneous fluid regions are often discretized with un-
necessarily large particle numbers. Space adaptive methods
thus try to resample particles in order to more accurately
resolve regions with larger flow activity employing non-
uniform particle radii. In order not to introduce high pressure
variations, sampling techniques must maintain particle reg-
ularity while staying computationally efficient. This survey
classifies these level-of-detail approaches into two classes:
dynamic particle refinement methods and multi-scale tech-
niques.

5.1.1. Dynamic Particle Refinement

The idea of a particle refinement is to dynamically exchange
particle sets, either globally [CPK02] or locally [FB07],
in order to increase the resolution in regions of complex
flow. To introduce as little sampling errors as possible, a
local error functional must be minimized [FB07], which
in general requires Lagrange multipliers [LB95]. However,
in computer graphics, simpler but faster sampling operators
are used [DC99,KW02,LQB05,KAD∗06,APKG07,ZSP08,
OK12]. In high resolution regions H, particles split to a fixed
number of equally sized child particles, and vice versa merge
to a single parent particle in low resolution regions L. Reso-
lution levels directly contribute to each other yielding a con-
sistent fluid representation.

However, non-uniform smoothing radii lead to difficulties
in reproducing quantity fields at level boundaries [BOT01].
Sampling errors are reduced by indirect interaction between
particle levels [KAD∗06] or by slowly changing smoothing
radii over several layers [APKG07]. Still, sampling opera-
tors do not consider contributions from neighboring parti-
cles. SPH differentials are quite sensitive to the resulting ir-
regular particle structure [BT07]. Thus, in order to maintain
integration time steps equal to non-adaptive fluid solvers, an
error-bound temporal blending of resolution levels is advan-
tageous [OK12]. An example for an adaptively sampled SPH
fluid using smooth blending between particle levels is out-
lined in Alg. 5.

Algorithm 5 Dynamic refinement SPH.
while animating do

compute physics for L and H
blend quantities between transitioning particles
update blend weights using an error estimation
identify split/merge regions
split particles in L/merge particles in H

To avoid temporal field discontinuities, new particles are
smoothly blended in, while old particles are faded out using
blend weights for all particles in transition. Blend weights
are updated with respect to the introduced sampling error,
leading to small transition regions as shown in Fig. 5.

5.1.2. Multi-scale Methods

As an alternative to dynamically merging and splitting par-
ticles, level-of-detail can be achieved by using multiple res-
olution levels which are simulated in separate but coupled
simulations [SG11, HS13]. The particle radius is fixed in
each level, but arbitrarily large differences of particle sizes
can be used between levels. The basic idea is presented
in [SG11] for two levels and is summarized in Alg. 6. The
complete fluid is discretized and simulated in the coarse level
L. A subset region of the fluid is simulated with higher res-
olution in the fine level H. The boundary condition for the
subset in H is defined by boundary particles. They contribute
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Algorithm 6 Two-scale SPH.
while animating do

compute physics L
determine regions in L
transfer region information from L onto H
add / delete boundary particles in H
interpolate quantities from L onto boundary in H
for nSubsteps do

compute physics H
advect boundary particles in H

update parent particle
interpolate feedback from H onto L

to the physics of nearby H particles but are advected by the
velocity of the closest particle in L, referred to as parent par-
ticle. Boundary particles can transition into the active region
of H, thus a relaxation scheme is necessary to restore the
correct sampling density and to stabilize the system. Bound-
ary particles are dynamically emitted and removed from the
simulation. A feedback force transfers the velocities back
from H to L. An example is illustrated in Fig. 6.

This approach is extended in [HS13] to multiple resolu-
tion levels. A different boundary emission scheme is used
to ensure conservation of the total mass, hence retaining
the advantage of single-scale SPH solvers. The relaxation
scheme is extended to support stability with complex colli-
sion boundaries.

Figure 5: In [OK12], resolution is smoothly changed via a
temporal blending of particle levels (orange). An error esti-
mation stabilizes integration time steps during blending.

Figure 6: Two-scale simulation [SG11]: dark blue corre-
sponds to L, light blue to H (view frustum), and red to the
boundary layer of H. Bottom row shows an overlay of the
particle rendering and the surface computed with [SSP07].

Compared to the single-scale solution, computation time
is decreased by a factor of 3 to 12. The overall performance
gain depends on the size of the visually interesting subset
and hence the particle count in the high-resolution region.

5.2. Adaptive Time Discretization

In contrast to an adaptive space discretization, the time do-
main can be adaptively sampled as well. In the following,
time-adaptive methods are classified into globally adaptive
schemes using a single but dynamic integration time step for
all particles and a locally adaptive time stepping employing
individual time steps for each particle.

5.2.1. Globally Adaptive Time Steps

The convergence of SPH simulations is bound to the CFL
condition (see Sec. 1). The idea of a globally adaptive time
discretization [DC96, IAGT10, GP11] is to adjust the inte-
gration time step in each simulation step with respect to the
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CFL condition. Thereby, the time step automatically adapts
to the flow dynamics, hence avoiding complicated time step
tuning.

However, in iterative EOS methods, the maximum force
Fmax or maximum velocity vmax is not known a priori. This
might lead either to too restrictive time steps or to stability
problems in case the dynamics are underestimated. To cope
with this, [IAGT10] proposes to change the time step max-
imally by 0.2% per simulation step. In some cases, the rela-
tively small time step change might still not be sufficient to
resolve large density fluctuations, requiring a separate shock
handling mechanism.

5.2.2. Locally Adaptive Time Integration

Applying the same time step globally to all particles may
restrict computation speed if precise integration is only lo-
cally required. Thus, the idea of locally adaptive meth-
ods [DC96, DC99] is to use individual time steps for each
particle at the cost of non-symmetric particle interactions,
ignoring the action equals reaction principle. In [DC96],
each particle evaluates forces at the largest possible time step
which satisfies stability restrictions. Individual particle states
are then synchronized at ∆t intervals.

In [GP11], barely active fluid regions are completely de-
activated. Particles are divided into active particles and inac-
tive particles which are static until the velocity magnitude or
distance to the fluid surface triggers reactivation. Compared
to non-iterative EOS solvers with constant time stepping, a
speedup of 6.7 has been reported in [GP11] for scenarios
with up to 1 million particles.

6. Multiphase Fluids

The SPH algorithm can be adapted for multi-fluid flows
(e.g., [MSKG05,TM05b,HA06,SP08,SB12]). In contrast to
mesh-based methods where diffusion is introduced at the in-
terface, the particle representation offers the advantage that
the interface between two fluids is sharply defined. In this
survey, we first discuss the literature on liquid-liquid inter-
action, and then present the works on modeling the liquid-air
interface. Further, we outline the literature on surface tension
forces.

6.1. Liquid-Liquid Interface

Multiple fluids with small density ratios, i.e., up to a factor
of 10, can be simulated with a standard SPH solver (Sec. 1.2)
by only changing the mass and rest density of the particles
according to the fluid type [MSKG05]. The particle’s rest
volume remains constant, thus ma/ρ

a
0 = mb/ρ

b
0 for two flu-

ids a and b. The rest volume is invariant to changing the
mass, provided that the rest density is adapted accordingly.

With the one-fluid formulation for the density and force
computation, e.g., [Mon92, MCG03], discontinuities across

Figure 7: Standard SPH results in spurious behavior intro-
duced by discontinuities across the interface of two fluids
with density ratios (left). Adapted equations for multiple flu-
ids according to [SP08] eliminate the artifacts (right).

the interface are smoothed due to the SPH nature of sum-
ming up values from neighboring particles inside a com-
pact support. Hence, the density of a particle computed
with Eq. (3) is spuriously influenced by the density of the
fluid on the other side of the interface. Consequently, pres-
sure fields and the acceleration of a particle are affected,
resulting in spurious interface tension effects [Hoo98] and
a large gap between the fluids [AMS∗07]. The problem is
intensified if larger density ratios (>10) are used, introduc-
ing instability issues which are unrelated to the time step
size [CL03, SP08]. This is illustrated in Fig. 7.

To account for the density discontinuity across the inter-
face, the standard SPH equations can be adapted in terms
of the number density δi = ∑ j Wi j [TM05b, HA06, SP08].
The density of a particle i is then computed as ρ̃i = miδi.
This formulation offers the advantage that the density of
particle i is not influenced by the mass of its neighbors j,
even though i receives the geometric contribution Wi j from
j. Hence, if i and j belong to different fluids, the computed
density is not unphysically affected and sharp density pro-
files are achieved. The pressure p̃i is then computed from ρ̃i
with Eq. (9).

In [SP08], ρ̃i and p̃i are substituted into the pressure
term of the Navier Stokes equations, resulting in the pres-
sure force Fpressure = −∇ p̃/δ. Employing the quotient
rule [Mon92] yields ∇p̃/δ =∇(p̃/δ)+ p̃/δ

2∇δ. After ap-
plying the SPH rule and replacing V by 1/ρ̃, the pressure
force equation is written as

Fpressure
i =−∑

j
(

p̃ j

δ j
2 +

p̃i

δi
2 )∇Wi j. (16)

Though derived differently, Eq. (16) is applied in a similar
form in [TM05b, HA06]. The viscosity force for multi-fluid
systems can be derived similarly [SP08]. Note that, applied
to a single fluid, the equations correspond to the standard
one-phase flow formulation. By applying them to multiple
fluids, however, spurious tension effects are avoided and sta-
bility is improved. The system can be further extended with
an incompressibility condition [HA07].
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Alternatively, the continuity equation can be used to com-
pute the density in multi-phase flows [OS03, MR13]. The
latter work is based on a Lagrangian with the continuity
equation as a constraint. The continuity equation evolves the
density over time by dρ/dt = −ρ∇ · v [Mon94]. This for-
mulation avoids the inherent issues of the summation equa-
tion, and hence is also applicable to free surface problems.
They typically require higher-order time stepping schemes
and careful considerations of time step sizes to avoid accu-
mulation of integration errors and thus drift from true mass
conservation [SP08, SB12]. In [GAC∗09], the density sum-
mation equation is used in combination with a Shepard ker-
nel to accurately preserve the discontinuity at the interface.
The presented kernel is based on the volume distribution and
the rate of change of the volume estimated by the continuity
equation.

In the computer graphics literature, the density summa-
tion equation is preferred over evolving the density with the
continuity equation. Avoiding error accumulation and thus
drift from the rest volume is especially relevant for applica-
tions that require large time steps and robust results even if
a comparably large time frame is simulated.

6.2. Liquid-Air Interface

In contrast to the liquid-liquid interface (Sec. 6.1), the prob-
lems at the liquid-air interface are intensified due to the
lack of air particles. Thus, the modified equations for multi-
phase fluids have no effect. Instead of discretizing the sur-
rounding air completely, methods have been proposed to
seed air particles only in areas close to the free surface,
e.g., [MSKG05, IBAT11, SB12].

One-way coupling of air and water particles is presented
in [SB12]. A narrow layer of air particles is dynamically
generated, and quantities, such as the mass and velocity, are
extrapolated. The air density is set to ρ0 considering the
p = 0 surface boundary condition. Air particles only con-
tribute to the density field and otherwise do not interact with
fluid particles. They are passively advected with the velocity
field of the fluid. Thus, particle resampling is necessary to
reduce drift away from the liquid. However, large smoothing
radii are required in order to smooth sampling errors. Air
particles in [SB12] are only employed to account for parti-
cle deficiency and, thus, to correct the density estimates at
the free surface. However, air particles are not used to model
the entrainment of air.

Although large density ratios can be modeled with [SP08],
small buoyant volumes are damped as soon as the fluid
approaches the equilibrium state [LSRS99, SP08]. It is ar-
gued that in this situation pressure forces arrange the par-
ticles in a stable lattice configuration which is difficult to
break up. In order to model fast rising air bubbles, a buoy-
ancy force can be added to counteract this effect, artificially
simulating the high density ratio between water and air,

e.g., [MSKG05, CPPK07, IBAT11]. In these methods, par-
ticles are dynamically generated and deleted at the liquid-
air interface which can be computed based on the gradient
of the color field ∇c [MSKG05]. In contrast to [MSKG05],
two-way coupling of air and water particles in [IBAT11] is
not realized via the pressure field, but according to the veloc-
ity field. This allows to simulate realistic drag and lift effects
at comparatively large time steps which would cause numer-
ical instabilities for both, standard SPH [MSKG05] and the
modified multi-phase method [SP08].

Besides convection, physically-based formulation of
reaction-diffusion processes at free surfaces requires stable
modeling of phase singularities. The key concept of the im-
plicit definition as given by [OHB∗13] is to assign to each
particle a value estimating its surface area, yielding a narrow
band of surface particles as shown in Fig. 8. Like this, quan-
tity fields defined on the surface can be consistently repre-
sented, enabling anisotropic diffusion effects and robust han-
dling of thin fluid sheets as they arise in combination with
multiple rigid objects [AIS∗12].

6.3. Surface Tension

In this survey, we distinguish between macroscopic and mi-
croscopic views of the surface tension model.

6.3.1. Macroscopic Models

The macroscopic models, also referred as the continuum sur-
face force model (CSF) [BKZ92], are based on a color field c
which has a jump across the interface of two phases [BKZ92,
Mor00, MCG03, MSKG05]. The color value of a particle
i is interpolated with (3). Then, ∇c is computed, yielding
the surface normal n pointing into the fluid. It can either be
computed with the original SPH formulation for the gradi-
ent [MCG03, MSKG05], by applying Eq. (6) [GAC∗09], or
by considering the color difference ci j between neighboring
particles to get more accurate estimates of the surface nor-
mal [Mor00, SP08]. The curvature κ is given as κ = −∇2c.
The resulting tension force then acts perpendicular to the in-
terface of two phases, trying to minimize the curvature κ.
In [MCG03, MSKG05, SP08], forces are only considered if
the length of the normals are large enough. In order to ensure
that tension forces are acting only on the interface of multi-
ple liquids and not at the free surface, the color field has to
be normalized [SP08].

Alternatively, the surface tension can be expressed as the
divergence of the stress tensor as in [HA06, GAC∗09]. The
stress tensor T is again given by the color field and can be
computed as T = σ1/|∇c|(1/3I|∇c|2−∇c∇cT ) [HA06].
In [GAC∗09], the formulation provides surface tension ef-
fects only between the two liquids but not at the surface.

However, the approximation of the Laplacian with SPH
for computing surface normals is error prone. As shown
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in [YWTY12], this can be alleviated by computing the cur-
vature from the reconstructed surface mesh. The surface nor-
mals can then be interpolated to adjacent particles. While
this method improves the quality, it relies on an explicit rep-
resentation of the fluid mesh in each simulation step which
decreases the overall performance.

6.3.2. Microscopic Models

The microscopic models consider cohesion forces be-
tween particles to imitate attractive forces between
molecules [NP00, TM05a, BT07]. In contrast to the macro-
scopic formulations (Sec. 6.3.1), the computation of the cur-
vature and thus the second derivative is avoided which is
particularly sensitive to particle disorder. In [NP00], the van
der Waals equation of state is used to compute the cohesive
pressure. The range of the attractive forces is increased to
4h to obtain stable liquid drops. Alternatively, the attractive
force can be computed within a distance h as in [BT07]. The
force is given as Fsur f ace

i = −σ∑ j m jxi j ·Wi j. In contrast,
in [TM05a,AAT13], the cohesion force is modeled as a com-
bined force of short-range repulsive forces and long-range
attractive forces.

Recently, it has been demonstrated that neither the mi-
croscopic nor the macroscopic model alone is sufficient to
model all effects at the same time [AAT13], i.e., large sur-
face tension, minimization of the surface curvature, no clus-
tering of particles and zero dissipation of momentum. This
has been realized in [AAT13], using a combined approach
which is further enhanced by an adhesion force that plausi-
bly models wetting effects.

7. Surface Reconstruction and Rendering

In the SPH literature, various techniques have been pre-
sented to reconstruct surfaces from a set of particles, both
for offline and real-time applications. The main challenge
thereby is to efficiently achieve smooth surfaces while cap-
turing fine surface details such as droplets, thin sheets, and
capillary waves. In this overview, we first discuss scalar field
definitions and polygonization in Sec. 7.1, then we outline
explicit methods and direct rendering techniques in Sec. 7.2,
and present screen-space approaches in Sec. 7.3. We con-
clude the section with volume rendering approaches, dis-
cussed in Sec. 7.4.

7.1. 3D Scalar Fields

In Eulerian simulations, the liquid surface is typically repre-
sented as the zero level set of the scalar level set function,
which is then advected by the fluid flow. In contrast, La-
grangian simulations usually define the surface by superim-
posing kernel functions of the individual particles to define
a scalar density field. The isosurface of this 3D field is then

polygonized with Marching Cubes [LC87]. The grid reso-
lution has a large influence on the surface quality and effi-
ciency. Literature suggests that a cell size of half the particle
spacing is required to capture very fine details [AIAT12].

Another important aspect for the surface quality, espe-
cially for the surface smoothness, is the definition of the
implicit function. Several scalar field formulations are pre-
sented in the literature. The earliest and probably simplest
approach are blobbies, also known as metaballs, presented
in [Bli82]. Each particle is approximated by a Gaussian po-
tential, and the superposition of these functions define a den-
sity field. While this approach is comparably simple, irreg-
ular particle distributions result in visible surface bumps.
These artifacts can be reduced by weighting the contribution
of each particle by its volume [MCG03].

Smoother surfaces are preferably computed by defining
the scalar field based on the weighted average of nearby par-
ticle positions x̄ [ZB05, APKG07, SSP07, OCD13, AIAT12,
AAIT12, OHB∗13]. A signed distance field is then given
by the implicit function φ(x) = |x− x̄| − r, where x is the
query point, r is the particle radius, i.e. half the particle spac-
ing, and φ(x) = 0 defining the on-surface points [ZB05].
As shown in [AIAT12], optimal results are achieved if the
weighted value x̄ is computed within an influence radius
of 4 times the particle spacing. Such a comparably large
influence radius, however, intensifies the problem of arti-
facts in concave regions observed with the original formu-
lation of [ZB05]. This issue can be addressed by modulat-
ing the surface distance r, either based on an eigenvalue
analysis of ∇x(x̄) [SSP07], or by a position-based decay
function [OCD13]. The formulation of [SSP07] is also used
in [AIAT12, AAIT12], but the scalar field is only recon-
structed in a narrow band around the surface, reducing the
memory footprint and computation time. The formulation
of [ZB05] can be extended to reconstruct smooth surfaces
for spatially adaptive simulations with variably sized par-
ticles [APKG07] (see Sec. 5.1.1). For this, the distance to
the surface is tracked for each particle and considered in the
scalar field computation. A temporally smooth transition of
surface particles stabilizes singularities like splashes or thin
sheets, as proposed in [OHB∗13].

In contrast to previous approaches which all use isotropic
weighting kernels, anisotropic kernels, determined by a Prin-
cipal Component Analysis over particle neighbors, can be
employed. Therefore, a single pass of Laplacian smooth-
ing of particle positions is added which facilitates the re-
construction of sharp features and edges [YT10]. Alterna-
tively, the thin-plate energy of the surface can be optimized,
while constraining the surface to lie within an inner and outer
bound given by the particle positions [BGB11].

7.2. Explicit Methods and Direct Rendering

Instead of constructing a new mesh in each rendering step,
explicit meshes can be used which are advected over time
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Figure 8: Implicit surface model (top) proposed
by [OHB∗13] and the corresponding volume render-
ing (bottom) similar to [OKK10]. A discretization of the
surface delta-function results in a narrow band of surface
particles (green) enabling quantity transport between bulk
(white), surface and rigids (orange).

and thus result in temporal-coherent structures. While sur-
face tracking techniques are usually used in the Eulerian
context (e.g., [EFFM02]), only few work exist in the SPH
literature. In [PTB∗03], a level set surface is defined, which
acts as an initialization for the consecutive rendering step.
The grid resolution used for the level set is independent from
the particle resolution. In [DC98], an active surface model is
used that is attracted to the isosurface of an implicit func-
tion. A grid is constructed in each rendering frame, thus re-
maining memory intensive. In contrast, the surface mesh is
only created initially in [YWTY12], and mesh vertices are
advected by the nearby particle velocities. The mesh surface
is periodically projected onto an implicit function to avoid
drift from the particles.

Alternatively, the polygonization step and thus exhaustive
memory consumption can be avoided by rendering the iso-
surface directly, for example, by computing ray-isosurface
intersections with metaballs [KSN08, ZSP08] or distance
fields [GSSP10] on the GPU, or intersections with spheres
on the CPU [GIK∗07]. For interactive simulations, point
splatting approaches [ZPvBG01] are employed to render
the particle sets using either isotropic weighting kernels
in [MCG03] or anisotropic kernels in [MM13], see Fig. 9.

Figure 9: Ellipsoid point splatting as used in [MM13] com-
puted based on anisotropic kernel weights [YT13]. The bot-
tom row shows the corresponding particle set.

7.3. Screen Space Approaches

In contrast to the rendering approaches in world space,
much work has focused on screen space methods targeted
at real-time applications. As these algorithms operate in
2D, they are much more efficient than their 3D counter-
parts. All methods have in common that they extract and
smooth a depth map from the 3D point cloud in screen
space. In [MHHR07], the depth map is smoothed by a bi-
nomial filter, and then used to extract a mesh in screen-
space with Marching Squares for the particles that are vis-
ible to the camera. Instead of generating an intermediate
mesh, the depth buffer can be directly rendered [vdLGS09,
Gre10, BSW10]. For this, each particle is first rendered as a
sphere, and then a smoothing filter is applied to the depth
values to get a continuous surface. A Gaussian filter is
used in [Gre10], with bilateral weights to preserve silhou-
ette edges. The efficiency is further improved by separating
the filter at the cost of introducing artifacts at the fluid sur-
face. Alternatively to Gaussian smoothing, changes in cur-
vature between the particles can be smoothed [vdLGS09].
The method is extended in [BSW10] to achieve smoothing
independent of the camera distance.
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7.4. Volume Rendering

While surface reconstructions conveys the geometric shape
of the fluid, the depth of the fluid volume or the mass flow
inside of it cannot be perceived by sole surface render-
ing alone. For this kind of information volume rendering
techniques are commonly employed, as shown in Fig. 8.
The idea is to evaluate a physically-based model for light
transport by treating the quantity field defined by the par-
ticles as a participating medium interacting with rays of
light [EHK∗06, HLSR08]. Conceptually, for each viewing
ray, emission-adsorption values are integrated from the cam-
era towards the fluid volume.

In the context of SPH, mainly hybrid splatting-slicing ap-
proaches have been proposed [vdLGS09, FGE10, FAW10]
using texture-based volume rendering. Particle contributions
are scattered [Wes90] onto view-aligned [NMM∗06] or axis-
aligned texture slices [SP09a] by exploiting rasterization
units of GPUs. Texture slices are then composed front-to-
back to yield the final image by exploiting the hardware-
based rendering pipeline.

In combination with more generic rendering architec-
tures, ray casting or ray tracing is commonly used, e.g.
for surface [SSP07, GSSP10] as well as volume render-
ing [OKK10, JFSP10, IAAT12]. Memory coherence for un-
structured point data is usually enforced by space subdi-
vision schemes in object-space, i.e. the simulation domain
is subdivided using kd-trees [ZRL∗08, LLRR08, JFSP10]
or octrees [GGG08, ZGHG10, FAW10]. However, ray cast-
ing of larger particle numbers at interactive rates re-
quires sophisticated pre-processing limited to offline appli-
cations [FSW09, RTW13]. Caching mechanisms [OKK10]
and sampling operators [FAW10] as discussed in Sec. 5 can
reduce the sampling overhead to some extent. A different
strategy is to use a perspective view-aligned grid with a log-
arithmic distribution of samples [FAW10] in order to adapt
the number of samples in viewing direction to the image
plane resolution.

8. Secondary Simulation

The realistic animation of ocean scenes with breaking waves
is challenging. Highly turbulent flows demand a high resolu-
tion to capture small-scale details like splashes, while for the
major part of the fluid a lower resolution is sufficient. This
can be partly addressed by employing multi-scale methods
as discussed in Sec. 5.1, however, the interplay of fluid and
air has to be explicitly modeled in order to capture the for-
mation of diffuse material, perceived as foam, spray and tiny
air bubbles.

In order to simulate fluid-air mixtures, multi-phase ap-
proaches as discussed in Sec. 6 can be employed. How-
ever, in order to avoid numerical instabilities, small time
steps and expensive computations, implicit models are fa-
vored, where air-water mixtures are determined based on

Figure 10: IISPH [ICS∗13] simulation of breaking waves
with whitewater [IAAT12]. The fluid volume is discretized
with 16 million SPH particles and up to 25 million sec-
ondary particles representing foam, bubbles and spray. The
volume radius of SPH particles was set to 1.8cm.

heuristics and an artificial buoyancy force is applied to
model the high-density contrast. Implicit modeling is con-
venient to capture even small-scale phenomena. In the
context of air bubble animations, this has been demon-
strated for grid-based [HLYK08, PAKF13] and particle-
based solvers [MSKG05, GH04, IBAT11], whereas implicit
mist models and spray models have been coupled to grid-
based fluid solvers [TRS06,LTKF08,CM11]. The first, pure
Lagrangian method which simulates spray, foam and air-
bubbles in an unified way has been presented in [IAAT12].

In [IAAT12], the influence of diffuse material onto the
water phase is neglected, which allows to simulate whitewa-
ter effects in a secondary simulation on top of pre-computed
fluid data. Physically-motivated criteria are formulated for
locating regions where water mixes with air, determined by
the potential of a fluid particle to trap air, its likelihood to
be at the crest of a wave and its kinetic energy. The com-
bined potential and the volume ratio determines the num-
ber of generated diffuse particles. Based on their location,
particles are classified as foam, spray or bubbles, which de-
termines how the fluid affects the motion of diffuse parti-
cles. As no forces are computed between diffuse particles,
diffuse-diffuse neighbor-sets are not computed, while large
time steps up to the frame rate can be used. This makes
the approach efficient to compute, e.g., [IAAT12] reports a
computation time of 2 hours for a 20 second video with 15
million diffuse particles using a standard desktop PC. Fur-
ther, [MM13] showed that the model of [IAAT12] can be
employed to enhance interactive fluid simulations. Examples
are given in Fig. 10 and Fig. 11.

An alternative method to model diffuse material for SPH
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Figure 11: PBF [MM13] simulation of waves breaking
around a lighthouse. The top row shows the base simulation
with 300k particles. The bottom row shows the final frame.
The surface is reconstructed using ellipsoid point splatting
and screen space filtering [vdLGS09]. The foam is simulated
with [IAAT12]. The computation of the final frame took 60ms
on the NVIDIA GTX 680.

fluids is presented in Bagar et al. [BSW10]. This model uses
the Weber number to classify fluid regions into water and
foam for real-time rendering. In this method, fluid particles
are rendered as foam particles when the Weber number ex-
ceeds a threshold. This improves the realism of real-time
simulations significantly. However, in contrast to [IAAT12],
the simulation only relies on fluid particles, i.e., no foam par-
ticles are represented, which restricts the level of detail to the
resolution of the underlying fluid.

9. Conclusions and Future Development

This survey showed that with the recent improvements on
incompressibility, efficiency, and flexibility, SPH has out-
grown its infancy and emerged to a powerful and versatile
fluid model. Particular challenges of SPH, such as search-
ing neighbors efficiently, preserving volume, locally adapt-
ing resolutions, and achieving smooth surfaces, have been
addressed. The simulation of millions of particles on desktop
computers is now possible, enabling the Lagrangian method

to keeping up with the visual quality of its Eulerian counter-
part.

Such comparably high-resolution simulations, however,
introduce new challenges. A main limitation is the time
step restriction, which represents a current bottleneck. Fur-
ther, evaluation of iterative incompressibility models, such
as PCISPH, IISPH, and PBF, suggest that the largest pos-
sible time step does not necessarily result in the best over-
all performance, which renders the time stepping even more
challenging. Future work is certainly necessary to automati-
cally determine the optimal time step size.

In contrast to high-resolution offline simulations, real-
time applications have gained less attention, although it
seems that particles are still the preferred discretization el-
ement, e.g., to model coarse 3D fluids in games. The main
issue with coarse simulations is that substantial dissipation
is introduced, resulting in viscous behavior and preventing
splashes and surface structures to evolve. Literature suggests
that this is due to larger support radii in coarse simulations,
i.e., the viscosity force which smoothes neighboring veloc-
ities over larger regions. While various formulations for the
viscosity force have been presented that reduce dissipation,
more work is certainly necessary to better understand and
to prevent the energy loss in coarse real-time simulations.
A concession is also made between efficiency and surface
quality, as splashes appear large and blobby, and surfaces
comparably bumpy. Recent work on secondary effects, such
as foam layers and bubbles, show their potential to dramati-
cally improve the visual appearance. Also, multi-scale meth-
ods provide the potential to counteract these effects.

Further, the liquid-air interface has not gained sufficient
attention in the SPH literature, yet. Although first attempts
have been presented to address the problems of particle de-
ficiency at the free surface, they introduce substantial addi-
tional costs and increase the complexity of the solver. A bet-
ter handling of the free surface is therefore necessary, which
accounts for the particle deficiency and accurately models
the air pressure, while not drastically affecting memory con-
sumption, performance, and simplicity of the solver.

While the particle representation has proven to be bene-
ficial in many aspects, such as trivial advection, interaction
with complex boundaries, free surface tracking, and mod-
eling multiple liquids, all presented variants of fully La-
grangian models come at the cost of tedious parameter tun-
ing. Although these parameters allow an artist to control the
desired effects, more work on automated parameter setting is
necessary to facilitate the scene setup and fluid initialization.

Appendix A: Lagrangian and Eulerian Approaches

In Lagrangian fluid approaches, a sample point xi is advected
with the local flow velocity of the fluid vi: dxi

dt = vi. This is
in contrast to Eulerian approaches, where a sample point xi
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is not necessarily advected, but commonly fixed in space and
aligned to a grid.

Sample positions, particles and grid cells: Lagrangian and
Eulerian fluid approaches compute the velocity field at sam-
ple positions. These sample positions represent a small fluid
volume and a small mass. In Lagrangian approaches, these
sample positions are often referred to as particles to indicate
that these small volumes or masses move with the flow. In
Eulerian approaches, sample positions represent small vol-
umes or masses that are not advected, e.g., cubic cells fixed
in space.

Navier-Stokes equation: The differential form of the fluid
momentum equation, i.e. Navier-Stokes equation, is com-
monly derived with the time rate of change of the velocity
of a small volumetric fluid element that moves with the flow.
The respective operator D

Dt is often referred to as material
derivative. Using this operator, the Navier-Stokes equation
can be written as

Dvi

Dt
=− 1

ρi
∇pi +ν∇2vi +

Fother
i
mi

, (17)

regardless of whether i is a Lagrangian or Eulerian sample.
Nevertheless, the material derivative translates to different
terms depending on the approach. In a Lagrangian setting,
we simply have Dvi

Dt = dvi
dt . Here, the material derivative of

the velocity corresponds to the time rate of change of the ve-
locity of the sample point, i.e. particle, that is advected with
its velocity. Note that Dvi

Dt = dvi
dt is only valid in combination

with dxi
dt = vi. In Eulerian approaches, the material derivative

has to be expressed with derivatives at samples i with fixed
positions. Here, we get Dvi

Dt = ∂vi
∂t +vi ·∇vi for the material

derivative of the velocity. Note that ∂vi
∂t is the time deriva-

tive of the velocity at a fixed Eulerian sample. This term is
different to dvi

dt which is the time derivative of an advected
Lagrangian sample.

To summarize, the Navier-Stokes equation for advected
Lagrangian sample points xi with dxi

dt = vi can be written as

dvi

dt
=− 1

ρi
∇pi +ν∇2vi +

Fother
i
mi

(18)

describing the time rate of change of the velocity of a moving
sample point or particle xi. For fixed Eulerian sample points
xi, the Navier-Stokes equation reads

∂vi

∂t
=− 1

ρi
∇pi +ν∇2vi +

Fother
i
mi
−vi ·∇vi (19)

describing the time rate of change of the velocity vi at a fixed
position xi.

Discussion: It is not possible to generally compare perfor-
mance and accuracy of Lagrangian and Eulerian methods.
This paragraph, however, discusses two aspects in this con-
text that sometimes tend to be discussed in a rather preju-
diced way.

Lagrange approaches are expensive as they determine par-
ticle neighbors in each simulation step, while Eulerian ap-
proaches efficiently work with a constant neighborhood. The
neighborhood search constitutes computational overhead in
Lagrangian approaches. On the other hand, it is rarely dis-
cussed that the handling of the convective derivative vi ·∇vi
is overhead in Eulerian approaches. E.g., the particles in
FLIP methods are a numerical technique to account for the
convective derivative at Eulerian sample positions of the un-
derlying grid.

Lagrangian approaches are compressible, while Eulerian
methods are incompressible. Many SPH fluids in Graphics
are compressible which basically refers to the fact that the
fluid density is a function of time. A typical issue in such
methods are oscillations of the fluid volume that adversely
affect the simulation quality. Incompressible Eulerian tech-
niques, on the other hand, have no notion of the fluid den-
sity. They start with the rest density at sample positions and
compute a divergence-free velocity field in each simulation
step to preserve the rest density. Issues in such formula-
tions are artificial viscosity [Sta99], mass loss [CM13] or
mass gain [GB13]. So, all compressible or incompressible
approaches have issues with volume changes. In compress-
ible formulations, these volume changes are due to density
fluctuations with perfect mass preservation. In incompress-
ible techniques, volume changes are due to mass changes
with perfect density preservation. Please also note that Eu-
lerian techniques also work with compressible formulations,
while Lagrangian techniques can be applied to incompress-
ible formulations as, e.g., discussed in [ICS∗13].
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